If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-10x=1
We move all terms to the left:
6x^2-10x-(1)=0
a = 6; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·6·(-1)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{31}}{2*6}=\frac{10-2\sqrt{31}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{31}}{2*6}=\frac{10+2\sqrt{31}}{12} $
| 5/x=9x/80-x | | 8+5x=12+3x | | 3x-101=89 | | 5=1/3x+3 | | /2x-2=-x+10 | | M-p=-13 | | s=47-(95/11*47) | | P(x)=-15x^2+600x+60 | | 4(-2.1v+0.69)-10v=9.2v | | 4(6x-1)=26 | | 4(–2.1v+0.69)−10v=9.2v | | 15+8x=2x+(30+3) | | p-3/5=4 | | 19.3=3.1(c-13)+13.1 | | 24/9=16/x | | 3(q+1)-2=7 | | 2(x–2)=3x-8 | | 2/3x+25=16 | | 6f+9=-6+9f-9 | | -4x(-12)=8 | | 6.78=1.82(f+1)+1.32 | | –3f+7=19 | | -(6r-9)=3(2r-9) | | 9•x•x•x=24 | | 3p=1/7 | | -8,6-1,3x=8,7x+0,4 | | 3.1(q+1)-1.44=7.86 | | 3e-7=-31 | | 10+3h=-10+9h-10 | | x(0.0875)=200 | | 3(-6-6z)=-2(10z+5) | | 4b+17=59 |